Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования Московский государственный университет имени М.В. Ломоносова Механико-математический факультет Кафедра инженерной механики и прикладной математики

УТВЕРЖДАЮ Заведующий кафедрой/Ганиев Р.Ф./ «»20г.
<u>"_"</u>
РАБОЧАЯ ПРОГРАММА ДИСЦИПЛИНЫ (МОДУЛЯ)
Наименование дисциплины (модуля):
Методы атомистического моделирования
в механике деформируемого твердого тела, жидкости и газа
наименование дисциплины (модуля)
Уровень высшего образования: Специалитет, подготовка кадров в аспирантуре
Направление подготовки (специальность):
Фундаментальные математика и механика
(код и название направления/специальности) Направленность (профиль) ОПОП:
Механика деформируемого твердого тела, механика жидкости, газа и плазмы
(если дисциплина (модуль) относится к вариативной части программы)
Форма обучения:
очная
(очная, очно-заочная)
Рабочая программа рассмотрена и одобрена
на заседании кафедры инженерной механики и прикладной математики
(протокол №, «» 20 года)

Москва 2019

Рабочая программа дисциплины (модуля) разработана в соответствии с самостоятельно установленным МГУ образовательным стандартом (ОС МГУ) для реализуемых основных профессиональных образовательных программ высшего образования по направлению подготовки / специальности «Фундаментальные математика и механика» (программы бакалавриата, магистратуры, реализуемых последовательно по схеме интегрированной подготовки; программы специалитета; программы магистратуры) в редакции приказа МГУ от 30 декабря 2016 г

T () приема на обу	
т оп тголы	тприема на ооч	ичение
т од (годы	i iipiicilia iia oo	y icitie

- **1**. Место дисциплины (модуля) в структуре ОПОП ВО (*относится к базовой или вариативной части ОПОП ВО*, *или является факультативом*).
- 2. Входные требования для освоения дисциплины (модуля), предварительные условия (если есть):

Освоение следующих дисциплин:

Дифференциальные уравнения

Уравнения с частными производными

Основы механики сплошной среды

3. Результаты обучения по дисциплине (модулю), соотнесенные с требуемыми компетенциями выпускников.

Компетенции выпускников	Планируемые результаты обучения по дисциплине (модулю), соотнесенные с компетенциями
(коды)	
ОПК-1	Знать:
Готовность использовать	Основные положения, основные модели и методы атомистического моделирования.
фундаментальные знания в	Уметь:
области механики сплошной	Использовать методы атомистического моделирования для решения задач механики деформируемых твердых
среды в будущей	тел, газа и жидкости.
профессиональной	
деятельности	
ПК-2	Знать:
способность к	Знать основы методов атомистического моделирования
самостоятельному анализу	Уметь
физических аспектов в	Правильно выбирать модели и постановки задач для рассматриваемых явлений.
классических постановках	
задач механики	

4. Формат обучения очный

5. Объем дисциплины (модуля) составляет 2 з.е., в том числе 36 академических часов, отведенных на контактную работу обучающихся с преподавателем, 36 академических часов на самостоятельную работу обучающихся.

6. Содержание дисциплины (модуля), структурированное по темам (разделам) с указанием отведенного на них количества академических часов и виды учебных занятий

Наименование и краткое содержание разделов и	Всего	В том числе			
тем дисциплины (модуля), Форма промежуточной аттестации по дисциплине (модулю)		(работа во прег	актная работа взаимодействы подавателем) вктной работы,		Самостоятельная работа обучающегося, часы (виды самостоятельной работы – эссе, реферат, контрольная работа и пр. – указываются при необходимости)
		Занятия лекционного типа*	Занятия семинарского типа*	Всего	
Тема 1. Введение. Континуальная механика. Мотивация к исследованию свойств среды на атомно-молекулярном уровне. Обзор задач, которые удается решить с помощью молекулярнодинамических методов.	4	2	0	2	2
Тема 2. Атомная структура газа, жидкости и твердого тела. Радиальная функция распределения атомов. Классификация кристаллических решеток твердых тел. Решетки Бравэ. Индексы Миллера. Дефекты кристаллической решетки.	4	2	0	2	2
Тема 3. Межатомные потенциалы. Парные и многочастичные потенциалы. Потенциалы погруженного атома (EAM, ADP, MEAM). Энергия системы атомов. Методы оптимизации энергии	4	4	0	4	2

		1		1	
системы. Энергия связи атомов. Энергия					
образования дефектов кристаллической решетки.					
Тема 4. Метод молекулярной динамики.	4	2	0	2	2
Интегрирование уравнений Ньютона.					
Неустойчивость системы уравнений Ньютона.					
Явный метод Leap-Frog. Неявные схемы					
интегрирования. Вычисление осредненных					
параметров среды. Энергия, температура, скорость					
импульс и момент импульса. Тензор напряжений.					
Вириальное напряжение.					
Тема 5. Метод молекулярной динамики при	4	2	0	2	2
постоянной температуре и давлении. Каноническое					
распределение Гиббса. Термостаты и баростаты					
Андерсена, Ланжевена, Бередсена и Ноза-Хувера.					
Коллоквиум по темам 1–6	2	_			2
Тема 6. Особенности реализации метода	4	2	0	2	4
молекулярной динамики. Ускорение расчетов.					
Разбиение области на подобласти. Списки соседей					
для атомов. Граничные условия. Периодические					
граничные условия. Параллельная реализация					
метода молекулярной динамики.					
Тема 7. Практические занятия: использование	6	0	2	2	4
пакета LAMMPS. Установка программы. Создание					
расчетной области. Заполнение расчетной области					
атомами. Оптимизация энергии системы. Задание					
начальных условий и граничных условий. Выбор					
межатомных потенциалов. Интегрирование					
уравнений движения атомов, использование					
термостатов и баростатов. Запуск расчета на					
локальной машине. Визуализация результатов в					
OVITO. Альтернативные способы создания					
конфигурации атомов.					

Тема 8. Модули упругости кристаллических	6	2	2	4	2
твердых тел. Симметрия тензора модулей					
упругости. Расчет модулей упругости объемных					
материалов методами молекулярной динамики и					
статики. Упругие свойства поликристаллов.					
Механические свойства наноматериалов.					
Тема 9. Моделирование ударно-волнового	6	2	2	4	2
нагружения материалов. Адиабата Гюгонио.					
Упругая и пластическая волна сжатия в					
конденсированных средах. Релаксация напряжений					
за фронтом ударной волны.					
Тема 10. Моделирование динамики дефектов	6	0	2	2	4
кристаллической решетки. Движение дислокации.					
Зависимость скорость дислокации от напряжения.					
Взаимодействие дислокаций с примесями.					
Напряжение Пайерлса.					
Тема 11. Определение вязкости и	8	2	2	4	4
теплопроводности материалов и жидкостей,					
коэффициентов диффузии компонент газов.					
Равновесная и неравновесные постановки задач.					
Формулы Грина-Кубо. Примеры расчетов.					
Промежуточная аттестация: экзамен и защита	4				4
результатов самостоятельной работы					
Итого	72			36	36

^{*}Внимание! В таблице должно быть зафиксировано проведение текущего контроля успеваемости, который может быть реализован, например, в рамках занятий семинарского типа.

^{**} Часы, отводимые на проведение промежуточной аттестации, выделяются из часов самостоятельной работы обучающегося

- 7. Фонд оценочных средств (ФОС) для оценивания результатов обучения по дисциплине (модулю)
- 7.1. Типовые контрольные задания или иные материалы для проведения текущего контроля успеваемости.
 - 1. Коллоквиум по темам 1–6:
 - 1.1. Сформулировать основные положение методов молекулярной динамики и статики,
 - 1.2. Перечислить основные типы межатомных потенциалов и дать описание их свойств и применимости.
 - 1.3. Дать описание основных моделей термостатов, использующихся для поддержания температуры в системе
 - 1.4. Дать описание основных моделей баростатов, использующихся для поддержания напряжения в системе
 - 1.5. Записать формулы осредненных параметров среды: энергии, температуры, скорости и напряжения.
- 7.2. Типовые контрольные задания или иные материалы для проведения промежуточной аттестации.
- 1. Список билетов к экзамену:
 - 1. Атомная структура вещества. Атомы и молекулы. Радиальная функция распределения атомов. Кристаллическая структура твердых тел. Классификация решеток. Решетки Бравэ. Индексы Миллера.
 - 2. Энергия системы взаимодействующих атомов. Алгоритмы нахождения минимума потенциальной энергии системы атомов. Вычисление энергии связи молекулы, энергии когезии кристаллической решетки и теплоты образования дефектов кристаллической решетки материалов.
 - 3. Метод молекулярной динамики. Численные схемы интегрирования уравнений Ньютона. Неустойчивость системы уравнений Ньютона. Граничные и начальные условия.
 - 4. Парные и многочастичные межатомные потенциалы. Свойства парных потенциалов Морзе и Леннарда-Джонса. Вычисление силы, действующей между атомами.
 - 5. Потенциалы погруженного атома ЕАМ, ADP и MEAM. Функция погруженного атома и электронная плотность. Применимость потенциалов.
 - 6. Особенности реализации метода молекулярной динамики: разбиение области на ячейки, списки соседей.
 - 7. Вычисление осредненных параметров среды. Энергия, температура, скорость импульс и момент импульса. Тензор напряжений. Вириальное напряжение
 - 8. Модули упругости кристаллических твердых тел. Определение компонент тензора модулей упругости с помощью методов молекулярной статики и динамики. Упругие свойства поликристалла.
 - 9. Пластическая деформация металлов. Кривая напряжения-деформация. Предел упругости. Моделирование высокоскоростной деформации материалов методом молекулярной динамики.

- 10. Дислокации и пластичность металлов. Определение зависимости скорости дислокаций от напряжения методом молекулярной динамики. Деформационное упрочнение и легирование сплавов. Связь между движением дислокаций и пластической деформацией.
- 11. Ударно-волновое нагружение материалов. Упругий предвестник и пластическая волна. Откольная прочность. Адиабата Гюгонио. Моделирование ударного нагружения материалов методом молекулярной динамики.
- 12. Определение коэффициента вязкости и теплопроводности сред методами молекулярной динамики. Равновесный и неравновесный метод расчета. Формулы Грина-Кубо.

2. Защита результатов самостоятельной работы.

ШКАЛА И КРИТЕРИИ ОЦЕНИВАНИЯ результатов обучения (РО) по дисциплине (модулю)								
Оценка РО и соответствующие	2	3	4	5				
виды оценочных средств								
Знания (виды оценочных средств: устные и письменные опросы и контрольные работы, тесты, и т.п.)	Отсутствие знаний	Фрагментарные знания	Общие, но не структурированные знания	Сформированные систематические знания				
Умения (виды оценочных средств: практические контрольные задания, написание и защита рефератов	Отсутствие умений	В целом успешное, но не систематическое умение	В целом успешное, но содержащее отдельные пробелы умение (допускает неточности непринципиального характера)	Успешное и систематическое умение				

на заданную тему и т.п.)				
Навыки (владения, опыт деятельности) (виды оценочных средств: выполнение и защита курсовой работы, отчет по практике, отчет по НИР и т.п.)	Отсутствие навыков (владений, опыта)	Наличие отдельных навыков (наличие фрагментарного опыта)	В целом, сформированные навыки (владения), но используемые не в активной форме	Сформированные навыки (владения), применяемые при решении задач

8. Ресурсное обеспечение:

- Перечень основной и дополнительной литературы:
 - Основная:
- 1. Френкель Д., Смит Б. Принципы компьютерного моделирования молекулярных систем: от алгоритмам к приложениям. 2013г. 578с.
- 2. Рапапорт Д. К. Искусство молекулярной динамики. М.; Ижевск: Ин-т компьютер. исслед., 2012. 630 с
- 3. А.М. Кривцов. Деформирование и разрушение твердых тел с микроструктурой. М.: Физматлит, 2007. 304 с.
- 4. M. P. Allen and D. J. Tildesley. Computer Simulation of Liquids. Oxford University Press, Oxford, 1989.
- 5. W. Cai. Stanford Lectures ME346.
- 6. Shuichi Nose, A molecular dynamics method for simulations in the canonical ensemble, *Molecular Physics* **52** 255-268 1984
- 7. Hans C. Andersen, Molecular dynamics simulations at constant pressures and/or temperature", J. Chem. Phys 72 2384-2393 1980
- 8. Zimmerman J. A. et al. Calculation of stress in atomistic simulation //Modelling and simulation in materials science and engineering. − 2004. − T. 12. − № 4. − C. S319.
- 9. A.Y.Kuksin, I.V.Morozov, G.E.Norman, V.V.Stegailov, I.A.Valuev. <u>Standards for Molecular Dynamics Modeling and Simulation of Relaxation</u>
 // Molecular Simulation **31**, 1005-1017 (2005)
- Перечень лицензионного программного обеспечения (при необходимости): Не требуется.
- Перечень профессиональных баз данных и информационных справочных систем: Не требуется.

• Перечень ресурсов информационно-телекоммуникационной сети «Интернет» (при необходимости):

LAMMPS (lammps.sandia.gov) – molecular-dynamics software package

OVITO (ovito.org) – визуализация атомных конфигураций

ATOMSK (https://atomsk.univ-lille.fr) – создание атомных конфигураций

Электронная библиотека попечительского совета механико-математического факультета МГУ (http://lib.mexmat.ru)

Библиотека кафедры инженерной механики и прикладной математики (http://enmech.ru/education/library/)

- Описание материально-технического обеспечения:
 - Аудитория
 - Доска
 - Мел
 - Экран
 - Проектор
- 9. Язык преподавания:

Русский

10. Преподаватель (преподаватели):

к.ф.-м.н. Брюханов Илья Александрович

11. Автор (авторы) программы:

к.ф.-м.н. Брюханов Илья Александрович, к.ф.-м.н. Якунчиков Артем Николаевич